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ABSTRACT

Various methods of constructing a set of mutually orthogonal latin squares
are presentedand the theoretical aspects of various methods are discussed.
Illustrative examples of constructing latin squares and sets of mutually ortho-
gonal latin squares are given. The methods of consiructing latin squares and
sets of orthogonal latin squares are complete and partial confounding, frac-
tional replication, analysis of variance, group, projecting diagonals, orthe-
morphism, pairwise balanced design, oval, code, product composition, and
sum composition., The methods of construction designated as partial confound-
ing, fractional replication, analysis of variance, and sum composition appear
not to have been discussed previously in the literature. The methods of
complete confounding and of projecting diagonals have been discussed; the
actual construction procedure has been illustrated with several examples,

The sum composition method has interesting consequences in combinatorial
theory as well as in the construction of orthogonal latin squares. Lastly,
equivalences of fourteern combinatorial systems to orthogonality in latin squares

has been investigated and described.






SOME TECHNIQUES FOR CONSTRUCTING MUTUALLY
ORTHOGONAL LATIN SQUARES

Ww. T. Federerl, A. Hedayatz, E. T. Parker3
B. L. Raktoe4, Esther Seidens, and R. J. Turyn6

I. Introduction and Some Terminology

The purpose of this paper is to present a set of methods for constructing
mutually orthogonal latin squaes and to exhibit some squares produced by each
of the methods. The set of methods presented herein was discussed in a series
of informal seminars held during the weeks of July 14-18 and 21-25, 1969, by the
authors at Cornell University. The motivation for these discussion was derived
from results obtained by Hedayat [1969] and from the optimism of the authors.

New procedures for constructing a set of mutually orthogonal latin squares and
new views of present methods of construction were desired in order to advance the

theory of mutual orthogonality in latin squares.

Professor of Biological Statistics, Cornell University and Visiting Professor,
Mathematics Research Center, University of Wisconsin (on sabbatical leave
1969'70)-

2 Assistant Professor, Cornell University.

Professor of Mathematics, University of Illinois, and Visiting Professor,
Cornell University (July, 1969).

& Associate Professor, University of Guelph and Visiting Associate Professor,
Cornell University (January to August, 1969).

Professor, Michigan State University, and Visiting Professor, Cornell Uni-
versity (June, July, August, 1969).
6

Mathematician, Raytheon Corporation, and Visiting Professor, Cornell Uni-
versity (July, 1969).

Sponsored by the United States Army under Contract No.: DA-31-124 -ARO-D-
462.




As may be noted from the table of contents, the different sections were
written by different authors. An attempt was made to have a consistent notation
and a uniform style. Although much more work is required to finalize the method
in several of the sections enough is known about the method to use it to con-
struct a latin square of any order or to construct a set of two or more mutually
orthogonal latin squares. Also, a number of equivalences may be noted for some
of the methods.,

The theory of mutual orthogonality in latin squares has application in the
construction of miny classes of experiment designs and in many combinatorial
systems. The latter subject is discussed in section XV where the equivalences
of varicus combinatorial systems are presented. With regard to the former sub-
ject, there is an ever present need for new experiment designs for new experi-
mental situations in order for the experimenter not to have to conduct his ex-
periment to fit known experiment designs,

Some of the riotation and terminology that will be utilized is presented
below,

Definition I,1. A latin square of order n on a set Z with n distinct elements

is an n X n matrix each of whose rows and columns is a permutation of the set

2 -

Example:
11213
2131 1isa latin square of order 3 on Z= {t,2,3} .
31112

R #1030



Definition I, 2. Two latin squares L1 = (aij) and LZ = (bij) of order n are

said to be orthogonal if the nz ordered pairs (aij’ bij) (i,j = 1,2,...,n) are

all distinct., Note that L, and L., need not be defined on the same set,

1 2
Example:
1]2 AIB|lC
311 and |[C|A | B
311 |2 B|I|CIA

Definition I, 3, The members of a set of t latin squares Ll’ LZ’ 050 g Lt of

order n are said to be mutually (pairwise) orthogonal if Li is orthogonal to
Lj’ i+j, i,j =1,2,...,t . Hereafter by an O(n,t) set we mean a set con-

sisting of t mutually orthogonal latin squares of orc'r n.,

Example:
112134 (2134 12134
21133 Al . JPBEe
3Tal112° 21 a3’ [al3(211]
3211 Bleali 2 211143

Latin squares and orthogonal latin squares have at least 187 years of history.
Hedayat [1969)], Section IX has presented a reasonably good picture of this
history which will not be repeated here, It is planned to prepare a historical
account of developments related to orthogonality in latin squares and to publish

this material together with a bibliography elsewhere.

#1030



II, Factorial Confounding Construction of O(n,t) Sets

II.1. Complete Confounding

A factorial treatment design consists of all possible combinations of two
or more factors each at two or more levels, The set of all combinations of m
factors each at n levels is denoted as an nm factorial; for n a prime power
the main effects and interaction effects in an n" factorial are ina 1l:l cor-
respondence with the points of the finite projective geometry PG(m-1,n) ., For
example, the nZ factorial consists of two main effects, say A and B with

levels (A)i and (B)j respectively, i,j =0,1,2,.,..,n-1, and n-1 two factor
u u

interactions AB S, s =1,2,,..,n-1 with levels (AB s) for u, +u u, =
ui+usu i s j

j

Ugs Ups Upgeeey Uy where the u, are elements of the Galois field GF(n) ,

i

and the n+1 effects are ina 1l:l correspondence with the points of PG(l,n).
Each of the n+1 effects is associated with a set of n-1 single-degree-of-
freedom~contrast parameters making a total of (n+l)(n-1) = nz-l parameters;
if the mean is adjoined to the set of contrasts then the nZ single-degree-of-
freedom-contrast parameters are in a 1l:l correspondence with the points of the
finite Euclidean geometry EG(2,n) ., Therefore, the n2 combinations uiuj are
in @ 1l:1 correspondence with the nZ single~degree~of~freedom-contrast param-
eters in EG(2,n) .

For n =4, the levels of the main effects and interactions are given by

¥ 2

j and (AB Sz.x+uu’ where u0=0,u1=1, u, =x, u =l+x =x are
s |

(A)i’ (B)
i
the marks of GF(4), i,j =0,1,2,3, and s =1,2,3 , Let (A)i be the rows

and (B), be the columns of a latin square of order 4 as follows:

)

S #1030



columnl = (B)0 column 2 = (B)l column 3 = (B)2 column 4 = (B)3
row l = (A)0 00 0l 02 03
rowa = (1-\)1 lQ 11 12 13
row 3 = (A)2 20 21 22 23
row 4 = (A), 30 31 32 33

In the above only the subscript of the combination uiuj and of the effects A and

Thus, = (A)0 consists of

B is given for each row=column intersection. (A)u

0
the n=4 subscripts 00,01,02,03 of the combinations UgUgs UgUys Uglps Ugls e

The remaining levels are similarly defined,

A symbol in a latin square corresponds to those combinations uiuj for
: u
which uy + usuj for interaction effect AB s’ is a constant, with each constant

corresponding to one of the n symbols in the latin square of order n . Also,

n-1 latin squares of order n 'may be formed for s =1,2,..., and n-l; this
set of latin squares forms an O(n,n-1) set, For n =4 the O(4,3) setis

formed as follows (additional detail may be found in Mann [1949], chapter VIII,

Kempthorne [1952], pages 331-340, and Federer [1955], chapters VII, IX and XV):

U000+ll+22+33"1 00=1 0l1=1I1 02=1II1 03=1V
u u, 01 + 104 23 +32—+11 10=11 11=1] 12=1V} 13=11I1
(BB 1) !
ui+u1uj= UZ 02+ 13+ 20+ 31 —1III 20=1IT1321=1V | 22=1 23=11
U303+12+21+30“'IV 30=IV | 31=1II1 | 32=11| 33=1
-5-

#1030



U 00 +13+21 +32~+¢ P Y 6 g

u u103+10+22+31—-p g Y o
(a8 )

ui+u2uj= U, 0l +12+20+ 33~y Y o p )

U302+ 11 +23430—~56 | 6 B o Y

UOOO+12+23+31-'W w Z X Y

u U 02+ 10+ 21 +33-X X Y w Z
(AB °)

ui+u3uj= UZ 03 +11 420+ 32—+Y Y X Z w

U3 01 +13+422+30~2 | 2 w Y X

where the first column to the right of the brace represents the u, obtained from

the subscript,

In the above the complete confounding scheme of sources of variation in
the O(4, 3) set and the effects in the factorial may be illustrated in the following
analysis of variance table wherein the total sum of squares has been orthogonally

decomposed into the sums of squares related to the above confounding scheme as

follows :

Source of variation Degrees of freedom

Correction for mean |

Rows = A effect 3

Columns = B effect 3

Bl

Roman numbers = (AB ") effect 3
%2

Greek letters = (AB ) effect 3
Us

Latin letters = (AB ") effect 3

Total 16

Instead of relating the mutually orthogonal latin squares of order 4 to a

4
4% factorial we may relate them toa 2 factorial in the following manner, i, e.,

we consider EG(4,2) and GF(2) with elements 0 and 1 . Let the 16 row-cclumn

intersections be numbered as follows:

-6- #1030



,
Sk 3

column
row 1 2 3 4
1 0000 0001 0010 0011
2 0100 0101 0110 0111
3 1000 1001 10106 1011
4 1100 1101 1110 1111

where the subscripts in the above table represent the combination agbh

the factors a,bh,c, and d with two levels (0 and l) each.* The rows correspond

c.d of
1]

to factorial effects A,B, and AB and the columns correspond to factorial effects
C,D, and CD . (This tform of constructing latin squares has been used by Fisher

and Yates [1957] for latin squares of order 8 and by Federer [1955]). Then, let

the symbols in the 3 latin squares be represented by the following scheme:
Factorial generators Combinations latin squares

(AC)O, (BD)O, (ABCD)O 0000 + 0101 + 1010 + 1111 =1 I I1 11 v
(AC)O, (BD)I’ (ABCD)1 0001 + 0100 4+ 1011 4+ 1110=1I | II I v 11
(AC)I’ (BD)O, (ABCD)l 0010 + 0111 + 1000 + 1101 = III | III |IV | I I1
(AC)l, (BD)I, (ABCD)O 0011 + 0110 + 1001 + 1100 = IV | IV [III | 1II I

n

(AD),, (ABC),, (BCD); 0000+ 0110+ 1011 +1101 =W )] W | Z | X ¥
(AD),, (ABC),, (BCD); 0010 + 0100 + 1001 + 1111 =X | X Y |W z
(AD),, (ABC)y, (BCD), 0001 + 0111 +1010+1100=2 | Y |X | Z2 | W
(AD),, (ABC),, (BCD), 0101 +0011+ 1000 +1110=Y | 2 |W Y |X
(ACD),, (BC),, (ABD), 0000 + 0111 + 1110 + 1001 = « a |y |6 |B
(ACD), (BC),, (ABD), 1010 + 0100 + 0011 + 1101 = B B vy | @
(ACD),, (BC),, (ABD), 1000 + 0110 + 1111 + 0001 = y Y |a |B |6
(ACD),, (BC), (ABD), 0010 + 0101 + 1011 + 1100 = & &5 1p |a |y

* Note: Some authors use lower case letters to denote the factors and capital
letters to denote effects or levels of effects; we follow that usage here.

#1030 d7s



The correspondence of the latin squares obtained from complete confound-

4
ing considering a 42 factorial and considering a 2
in the following analysis of variance table:

Source of variation

factorial is demonstrated

degrees of freedom

Correction for mean s 1
Rows = A effect inr factorial 3
A effect in 24 factorial 1
B n n 24 n l
AB n n 24 n l
Columns = B effect in 42 factorial 3
C effect in 24 factorial
D []] n 24 1]
CD n 1] 24 n
L
Roman numbers = &4 1 effect in 42 factorial 3
AC effect in 24 factorial
BD 1] n 24 1]
ABCD n 1] 24 1] l
u
Greek letters = AB 2 effect in 42 factorial 3
ACD effect in 24 factorial 1
BC 1] n 24 1] l
ABD 1] & 24 1] l
, £3 2
Latin letters = AB  effect in 4 factorial 3
AD effect in 24 factorial 1
ABC n " 24 n l
BCD n n 24 n
Total 16

It should be noted here that the effects in the 24 map directly into the

2
42 projective geometry or PG(l,2 ). Likewise, even though one more set of

generators is available, viz,

#1030



Gernerators interaction

Roman numbers = AD, BC ABCD
Greek letters = AC, ABD BCD
Latin letters = BD, ABC ACD

the three orthogonal latin squares produced are the same ones. Since the third
effect above is obtained as the product of two generators (exponents mod 2) we
need consider only two generators. Multiplying these by CD (exponents mod 2)
we obtain the generators of the preceding scheme. Hence, even though two dif -
ferent complete confounding schemes are available there is a simple one-to-one
mapping of one set into the other set. Although nothing interesting turns up here,
it would be intgresting to study the various complete confounding schemes in the

jatin square of order 9 as related to the 34 factorial.
As a second illustration of the use of complete confounding to construct

latin squares, let us consider a latin square of order 6 . Using the notation

and concepts of Raktoe [1969] on mixed prime factorials as related to rings and
elements of ideals in the rings we designate the 6‘2 as a 22(3)'2 factorial and
represent a combination by ghij where g,h are members of the ideal I (3) and

i,j are members of the ideal I (4) . The effects in the 2'2 and in the 32 factorials

are denoted respectively by:

IS s

g2 ot

a3
c*p?

The remaining interactions are given below in the analysis of variance table:

#1030 ’ -9~



Source of variation

Correction for mean

Degrees of freedom

1

Rows = 1\304 5

A3

C4

A3 X CJ4
Columns = B3D4 5

B3

D4

B3 X D4
Treatments or symbols = ABBBC "D4 5

A3B3

C4D4

A3B3 X CJ4D‘1

Remainder 20
C4D2 2
A3 X D4 2
A3 X C4D4 2
a*x c*p? 2
B3 X 04 2
B3 X C4D4 2
B3 X C4D2 2
1\383 X C4 2
1\3B3 X D4 2
A383 X C4D2 2
Total 36

#1030



Let us now set up the 6 rows and the 6 columns of a latin square of order

6 with the corresponding designation of the 36 combinations as follows:

Columns
Rows (B3D4)O (B3D4)1 (B3D4)2 (B3D4)3 (B3D4)4 (B3D4)5
(A3C4)O 0000 0304 0002 0300 0004 0302
(A3C4)l 3040 3344 3042 3340 3044 3342
(1\304)2 0020 0324 0022 0320 0024 0322
(1«\3C4)3 3000 3304 3002 3300 3004 3302
(1«\3C4)4 0040 0344 0042 0340 0044 0342
(A3C4)5 3020 3324 3022 3320 3024 3322

3.3 4 4
Now let the levels of A'B C D correspond to the symbols in a latin

square of order 6 as follows:

Levels Combination for which 3g+3h+4i+4j, mod 6, is constant Symbol
3.3 4 4

(ABCD )0 0000 + 3342 + 0024 + 3300 + 0042 + 3324 -» 0
3.3 4 4

(AB°CD )l 0304 + 3040 + 0322 + 3004 + 0340 + 3022 - 1
33 4 4

(A°B°C D )2 0002 -+ 3344 + 0020 + 3302 + 0044 + 3320 > 2
3.3 4 4

(ATB"C'D )3 0300 + 3042 + 0324 + 3000 + 0342 + 3024 > 3
33 4 4

(A'B"C'D )4 0004 + 3340 + 0022 + 3304 + 0040 + 3322 > 4
3.3 4 4

(ABCD )5 0302 + 3044 + 0320 + 3002 + 0344 + 3020 -> 5

#1030 -11-



This produces the following latin square of order 6:

0 1 2 3 4 5
1 2 3 4 5 0
2 3 4 5 0 1
3 4 5 0 1 2
4 5 0 1 2 3
5 0 1 2 3 4

Alternatively we could have used levels of A3B3C4D2 to construct the

following latin square of order 6:

Levels Combinations for which 3g+3h+4i+2j, mod 6,is constant Symbol
(A3B3C4D2')0 0000 + 3344 + 0022 + 3300 + 0044 + 3322 , 0
(A3B3C4D2)1 0302 + 3040 + 0324 + 3002 + 0340 + 3024 1
(A3B3C4D2')2 0004 + 3342 + 0020 + 3304 + 0042 + 3320 2
(A3B3C4DZ)3 0300 + 3044 + 0322 + 3000 + 0344 + 3022 3
(A3B3C4D2)4 0002 + 3340 + 0024 + 3302 + 0040 + 3324 4
(A3B3C4DZ)5 0304 + 3042 + 0320 + 3004 + 0342 + 3020 5

latin square of order 6

0 5 4 3 2 1
1 0 5 4 3 2
2 1 0 5 4 3
3 2 1 0 5 4
4 3 2 1 0 5
5 4 3 2 1 0

-12= #1030



Thus, the above square is simply a column permutation of the previous one. As
there are no other sets of 5 degrees of freedom leading to a latin square of order
6 (i.e. A3, B3

2
22 factorial and C4, D4, C4D4, and C4D exhaust all sets of 2 degrees of

, and .13‘383 exhaust the three single degrees of freedom from the

freedom from the 32 factorial ), it is not possible to obtain a latin square of

order 6 orthogonal to either of the preceding ones using complete confounding

schemes.

5.6 6 55 62
For a latin square of order 10 we may use levels of ASB CD,ABCD,

A53506D8, or AsBsC‘JD‘4 to form four different latin squares of order 10.

II. 2, Partial Confounding

In the last section use was made of complete confounding of effects in a
factorial with the rows, columns, and symbols in a latin square. In this section
some of the factorial effects will be partially confounded with row (column or
symbol) contrasts, i.e. contrasts among levels of an effect will be completely
confounded with a subset of the row (column or symbol) contrasts and will be
unconfounded with the remaining contrasts, and vice versa. In complete con-
founding no subset of contrasts among the levels of a factorial effect can be
separated from contrasts among the rows (columns or symbols). (See, e.g.,
Yates [1937] and Federer [1955] ). For example, the latin sq;lare of order 4
could be considered as a 24 factorial as in the preceding section, with the

following scheme of confounding:

Columns
Rows l=(C)O 2=(C)l 3=(D)0 4=(D)l
L (A),,B), 0000 0011 0010 0001
2 (A)O’(B)l 0101 0110 0100 0111
3 (), (Bl 1000 1011 1010 1001
4 (A)l’(B)l 1101 1110 1100 1111

#1030 ~]13=



If we set up the latin square symbols for the aboveas then

(3]
g

R
-

the symbols correspond to the following combinations:

a 0000 + 0110 + 1001 + 1100 = (ABCD)0 + other effects

B:  0011+0101+1010 + 1111 = (ABCD), + " "
y: 1000 + 1110 + 0010 + 0111 = (ABCD) + " "
§: 0001 +0100 + 1011 + 1101 = (ABCD), + " "

It is known that this latin square has no ~r*hogonal mate (Hedayat [1969] ).
This means that no orthogonal partition of the remaining sum of squares can be

made which forms a latin square,

If on the other hand, the latin square used is , the combinations

corresponding to the Greek letters are:

a: 0000 + 0110 + 1010 + 1111 = (ABCD)0 + other effects

B 001l + 0101 4+ 1001 + 1100 (ABCD)O + " "

Y 0010 + 0111 + 1000 + 1110

(ABCD)l + (AC)l + other effects

6: 0001 + 0100 + 1011 + 1101 = (ABCD)I + other effects

-14- #1030



This square has two mutually orthogonal mates and hence there must be partitions
of the sums of squares into orthogonal components which correspond to the symbols
in a latin square.

Instead of inserting symbols in the latin square of order 4, denote the
symbols in the latin square by the following partial confounding scheme, where

a fractional replicate is a subset of a complete factorial:

i) add the two 1/8 replicates generated by ((A)g, (D)y, (BC),)and
((A)l’ (C)l’ (ABD)I) to obtain the 4 combinations (0000 + 0110) +
(1010 + 1111) and denote these 4 combinations as symbol a ,

i1) add the two 1/8 replicates generated by ((D')l, (AB)I’ (AC)O) and
((AB)O, (C)o, (AD)I) to obtain combinations (0101 + 101l1) + (1100 +
0001) and denote these 4 combinations as symbol 8 ,

ii1) add the two 1/8 replicates generated by ((A)l, (D)o, (ABC)I) and
((A)o, (C)l, (BD)y) to obtain combinations (1000 + 1110) + (0010 +
01l1) and denote these 4 as symbol vy,

iv) add the two 1/8 replicates generated by ((AB)O, (AC)l, (D)l) and
((AB)l, (C)o, (BD)l) to obtain the combinations (1101 + 00ll) +

(0100 + 100l1) and denote these 4 as symbol 6.

This procedure results in the following latin square of order 4:

#1030 ~15-



Obviously, one could take any pair of 1/8 replicates such that the 4 combina-
tions are in different rows and in different columns to form the combinations for
a given symbol,

The above type of partial confounding results in the class of latin squares
denoted as half-plaid latin squares (See Federer [1955] chapters IX and XV and
Yates [1937]). If partial confounding were utilized in rows as well as in columns
the resulting square would be denoted as a plaid latin square (so~called because
of its resemblence to plaid cloth if the effects confounded were of different colors).
The three types of squares are illustrated below for a latin square of order 6 where

the factorial effects are as described in statistics books (e.g., Federer [1955]):

Complete confouinding of effects

Columns
1= 2= g 4 = 5= 6 =

Rows (A)o, (C)o (A)o, (C)l (A)o, (C)2 (A)l, (C)o (A)l’ (C)l (A)Z’ (C)2
1 = (B),, (D), 0000 0010 0020 1000 1010 1020

2 = (B)o,(D)l 0001 0011 0021 1001 1011 1021
3= (B)o,(D)2 0002 0012 0022 1002 1012 1022

4 = (B)l’(D)O 0100 0110 0120 1100 1110 1120

5 = (B)l’(D)l 0101 0111 0121 1101 1111 1121

6 = (B)l’(D)Z 0102 o112 0122 1102 1112 1122

Partial confounding of effects with columns
Columns

Rows 1=(C, |2=(C) |[3=(C), |4=(CD), |5= (CD), |6 = (CD),
1 = (B)o,(D)o 0000 0010 0020 1000 1010 1020

2 = (B)o,(D)l 0001 0011 0021 1021 1001 T0TT

3 = (B)g, (D), 0002 0012 0022 1012 1022 002

4 = (B)l,(D)o 1100 1110 1120 0100 0110 0120

5 = (B)l,(D)l 1101 1111 1121 0121 0101 0111

6 = (B)l’(D)Z 1102 1112 1122 0112 0122 lOlOZ
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Partial confounding in both rows and columns

Columns
Rows 1'=(C), [ e=1(C) [3=1(C),|4=(CD),]5 = (CD) 6 = (CD),
1 = (D), 00 10 20 00 10 20
2 = (D), 0l 11 21 21 01 11
3= (D), 02 12 22 12 22 02
4 = (c:DZ)0 00 11 22 00 22 11
5 = (CD‘)l 02 10 21 21 10 02
6 = (CD°), 01 12 20 12 01 20

In the last table above only the subscripts for combinations of factors c
and d have been inserted, There is some difficulty in inserting subscripts for
factors a and b such that these effects are orthogonal to both rows and columns,
In any event, this problem requires further study to determine if half-plaid latin
squares and plaid latin squares lead to latin squares not of the same type as given
by complete confounding. If the three types of latin squares of order 6 can be

produced by partial and complete confounding, this would be an interesting result,
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I1I. Fractional Reolication Construction of O(n, t) Sets

Any latin square may be considered as an n-l

3
fraction of an n~ factorial

where the rows represent levels of one factor, the columns represent the levels

of the second factor, and the symbols in the latin square represent the levels of

the third factor.

3
the 9 combinations represent the 1/3 fraction of a 3

The above is the 1/3 fraction of a 33

As an illustration, consider the latin square of order 3 where

Columns
Rows 0 1 2
0 000 012 021
1 102 111 120
2 201 210 222

corresponding to (ABC)

factorial as follows:

h+i+j=0,mod 3 ,

Since this is a regular fraction we may write out the aliasing structure in this

fraction as follows:

M + ABC

2 2
A +AB C +BC
B+ABZC + AC
C+ABC‘2 + AB

2

AB™ 4 ACZ + BCZ

where the effects connected with a plus sign are completely confounded with each

other,

the third factor, c.

say

In the above latin square the symbols 0,1,2 correspond to the levels of

a,B,Y,

2
correspond to the levels of AB , the resulting square

Now if we set up a second latin square in which the symbols,

will be

2 .
i
orthogonal to the first one, The square corresponding to levels of (AB )1+2j,mod 3

000 + 111 + 222
021 + 210 + 102
201 + 012 + 120

@ 1y
By
YIB|a
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The class of fractional replicates constituted as an n'-1 fraction of an n3
factorial becomes an important one to study as it relates to construction of mutu-
ally orthogonal latin squares, In particular, all 2'-3 fractions of a 29 and all
3'-2 fractions of a 36 with all possible aliasing structures could produce several
sets of mutually orthogonal latin squares. This could have interesting conse-
quences in finite geometry.

The structure of the left-hand set of parameters in an aliasing structure

will have a pattern; for example, for n = 4, 5, and 7, the patterus are:

n=4 n=>5 n=717
M + ABC M + ABC M + ABC
A A A
B B B
C C C
AB2 AB2 AB2
AB3 AB3 AB3
AB4 AB4
AB5
A86

Note that although ABC was completely confounded with the mean, any one of
the other three-factor interaction components ABuCV, u,v=12,.,,,n-1 could
have been utilized equally well, Also, note that the levels of C corresponding
to symbols produce a latin square , and that the levels of effects below the
factor B produce a set of n-1 mutually orthogonal latin squares,
In general we want to look at all possible n"1 fractions of an n3 factorial,

i.e,, the subset of(n2> combinations for which the levels of C are the symbols
n

in a latin square and to study their patterns especially for n = 7,8, and 9, All
possible fractions, or rather all forms of the aliasing structure, could be classi-
fied into all types of t mutually orthogonal latin squares, Of(n,t) for t = 1,2,
««.,n=1, Perhaps this is the manner in which the geometries of various values

#1030 -19~



of n can be exhaustively studied. In fractional factorial notation we want to
study all possible aliasing patterns for one latin square, for two latin squares,

etc. as given by:

M
A * sk

B +W Eo, etc.
C

X

where _go is the n2 + n=-2 vector containing the interaction effect parameters,
W is the 4 X (n2 +n - 2) matrix of aliasing coefficients, X is one of the

two factor interaction effects in Qo corresponding to a column of zero co-
efficients in W, and Q; and W* correspond to B and W with the param-
eter X deleted. For n= 3, By = (AB, a8%, ac, ac?, Bc, BC?, ABc, ABC®

ABZC, ABZCZ) and W is equal to

0 0 0 00 0} 0 o0 0
0 0 0 01 0 0 0 0 1
0 01 0 0 0 0 0 1 0
1 0 0 000 0 ! 0 O

Since there are three columns containing all zeros X could be either I\B2 .
ACZ, or BC2 . Selecting X as ABZ, say, there would be no columns in W*
which contain all zeros. Thus, to obtain an O(n,2) set from a given O(n,l)
set, at least one column in W should be all zeros. Likewise, to obtain an

*
O(n, 3) set from a given O(n, 2) set, at least one column in W should contain

all zeros.
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We now wish to illustrate the use of fractional replication procedures to

construct latin squares which are mateless and which have orthogonal mates.
To illustrate let us consider the four standard latin squares of order 4 which are

(Fisher and Yates [1957] ):

o[ 1]z2]3 o1 [z]3 o]t [2]3] [ol1]z]5
112{3]0 1 13 10 {2 110 |3] 2 110 |3 2
2131011 2 10 13 |1 213 1l o 21310 1
310112 3121110 312 (0] 1 31211 0
Square | Square II Square II1 Square 1V

It is known (Hedayat [1969] ) that the first three squares are mateless (There is
no transversal through 000.) and that the last square belongs to an O(4, 3) set.
Now number the rows as 0,1,2,3 and denote these as levels of the factor
a; number the columns as 0,1, 2,3, and denote these as levels of factor b,
and the symbols in the latin squares by 0,1,2, 3, the levels of the factor ¢
Then, in factorial notation the above 16 combinations form a one-fourth fraction
of a 43 factorial treatment design. The aliasing scheme for the fractional
replicate given as square IV is

‘ M + ABC
A +BC +AB2c? + aB%C?
B +AC + AB°C +AB°C
C +AB +ABC? +aBC’

and 3 means u_, from GF(4) and where the

where u, = 1, 2 means U, 3

1
effects connected with a plus sign are completely confounded with each other.
The completion of the remaining two aliasing structures results in the complete

aliasing structures for this 4-1 fraction of the 43 factorial; these two are:
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2
AB2 + A03 + BC2 + ABSC
3 2 3 2 3
AB  + AC +BC +AB C
2 3
If we usc the levels of AB~ and of AB™ to form two latin squares, these two
with square IV form an  O(4, 3) set of mutually orthogonal latin squares,
Now, let us return to the set of four standard squares given above and
we note that only four combinations in square IV are replaced to obtain squares

I, II, and III. These are:

additional combinations | combinations replaced in IV
Square I 112, 130, 310, 332 110, 132, 312, 330
" II 113, 120, 210, 223 110, 123, 213, 220
"I 213, 230, 320, 331 220, 231, 321, 330

The aliasing structure (without the coefficients is givenon the following page for
all four standard latin squares of order 4, The 1/4 replicate given by square IV
forms a regular fraction, The remaining three fractional replicates are such that

none of the additional effects are unconfounded with the effects M, A, B, or C of

the original latin squares of order 4, Since this is true no linear combination

of these effects will be unconfounded, In order to form a latin square which is

orthogonal to the given one it is necessary that there be a set of effects which

is unconfounded with the effects in the given square. This is impossible for the

three squares I, II, and III and hence the squares are mateless, as is well-known,
It would be interesting to ascertain the aliasing structures for the six

standard latin squares of order 5 belonging to the O(5,4) set and for the fifty

standard latin squares of order 5 for which are known to be mateless (Hedayat
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Aliasing structure of effects in the four 1/4 fractional replicates

of a 43 factorial for four standard latin squares of order 4

Square I Square II Square III Square 1V

Effect Effect Effect Effect
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T U U

w w NN
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No. of

means identical effect C means complete confounding
P  means partial confounding blank means unconfounded
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as® + ac’ + 8c? + aB3c?
AB3 + AC2 + BC3 + ABZC3
If we use the levels of ABZ and of AB3 to form two latin squares, these two
with square IV form an  O(4, 3) set of mutually orthogonal latin squares.
Now, let us return tc the set of four standard squares given above and
we note that only fourcombinations in square IV are replaced to obtain squares

I, II, and III. These are:

additional combinations |combinations replaced in IV
Square I 112, 130, 310, 332 110, 132, 312, 330
g II 113, 120, 210, 223 110, 123, 213, 220
"I 213, 230, 320, 331 220, 231, 321, 330

The aliasing structure (without the coefficients is givenon the following page for
all four standard latin squares of order 4. The 1/4 replicate given by square IV
forms a regular fraction. The remaining three fractional replicates are such that

none of the additional effects are unconfounded with the effects M, A, B, or C of

the original latin squares of order 4, Since this is true no linear combination

of these effects will be unconfounded, In order to form a latin square which is

orthogonal to the given one it is necessary that there be a set of effects which

is unconfounded with the effects in the given square. This is impossible for the

three squares I, II, and IIl and hence the squares are mateless, as is well-known,
It would be interesting to ascertain the aliasing structures for the six

standard latin squares of order 5 belonging to the O(5,4) set and for the fifty

standard latin squares of order 5 for which are known to be mateless (Hedayat
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Aliasing structure of effects in the four 1/4 fractional replicates

of a 43 factorial for four standard latin squares of order 4
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[1969] ). After a study of these fractions, one should continue such a study for
n=7,8,and9, Itis suggested that one consider a 26-'2 fractioh instead of a

4 ! fraction for n = 4 and a 29-3 fraction instead of an 83-l fraction for

n = 8. Thereason for this is that there is much more theory available for

s =2 inthe s" series than for any other value of s . Also, one may use the
generalized defining contrast which has been developed by Raktoe and Federer
[1969] to a considerable advantage in writing out aliasing structures in these
cases. Investigation of the regular and irregular fractional replicates obtainable
for various values of n could lead to considerable advances in the theory of

mutually orthogonal latin squares,
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IV. ANOVA Construction of O(n, t) Sets

There should be some procedure which would utilize the orthogonality of
single degree of freedom contrasts in the analysis of variance (ANOVA) and
which ~ould be utilized to construct orthngonal latin squares. For example, one
could make use of orthogonal polynomial coefficients for row and column con=
trasts and then construct mutually orthogonal latin squares from these. To illus-
trate, consider the latin square of order 4 used previously wherein the row-column

4 .
intersections are numbered as a 2 factorial, i.e.:

Column
Row 1 2 3 4

1 0000 0001 0010 | 0011

0100 0101 0110 | 0111
1000 1001 1010 | 1011
1100 1101 1110 | 1111

S wln

The relation between the 16 contrasts using orthogonal polynomial coefficients

and the 24 factorial is given below, where RL, RQ, and R_ are linear,

C

quadratic, and cubic polynomial contrasts among rows and C_, C., and C

L’ Q

are linear, quadratic, and cubic polynomial contrasts among the columns:

C

#1030 -25=



Source of variation

C.F. M,

Row contrasts

A= -R -2R,
B = -2R +R
AB = R

Q

Column contrasts

J {
¥
)

1 Rows linear = R

quadratic = RQ = AB

cubic = R_=2A-B

= - - = = 2
C CL ZCC Columns linear CL C +2D
D= -ZCL + CC quadratic = CQ = CD
CD = CQ cubic = CC 2C-D
Y
Roman numbers = (AB ")
AC = RLCL + 4RCCC 1 RL CL
BD = 4RLCL + RCCC ( 1 RCCC
= 1 R. C
ABCD RQCQ 9 o Ca
)
Greek letters = (AB ) 3
-2 + 1) (] R.C
ABD = RQC RQCC 1Cq
BC = ZRLC - ZRCCC $ M <
4RLCC RCCL 1 1 RQCC
ACD = (-RL-ZRC)CQ I.J 1 RCCL
Us
latin letters = (AB ) 3
AD = ‘.R C -ZRCCC RLCC+
4RCCL 1 \ 1 RLCC
ABC = RQ(-CL- ZCC) 1 1 RQCL
BCD = (=2R
( L+ RC)CQ 1’ 1 RC CQ
Total 16
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The individual degree of freedom contrast matrix for the above 16

combination is:

:ST Te1I030¥0]

Z 9Yj JOJ XTIjPW }SeIIUOD WOopaalj JO aaibap arburs burpuodsaiioo ayf,

/4
+ 1 € = 1 6 6- € 13 6- 6 €- = € €- + OOOM
- + + o € €- € € € 1 g + = = + OOOM
e-| = + | €| 6| €| e-| 6| 6| €= ¢ | 6 | ¢ | + | - | -] To°
= € ¢- + + € - + ¢- € = = € ¢- + OOOM
+ - - + - + + - - + + - + - - + OOOM
€ + = €= €- = + € €- = + € € + = €- .HOOM
-l 6| 6| € | -] e | e-| + | +# | =] €] -1 | 6| 6 | e-| PNy
€ €- € + = = + = + + = 1 € ¢ €- OO.HM
6 € €~ 6- € + - €- €- - + 3 6- € 6 .HO.HM
= € €= + = € + = 3 €- + = € ¢- + OO
+ - - + + - - + + - - + + - - + OO
€ + = €- € + = € + = 1 € + = €- .HO
- - = = € € € € 1 t €- €- + + + + OM
+ + + + - - - - = - - = + + + + Oy
€ € € € + + + + - - - - €- 1 €- €- .HM
+ + + + + + + + + + + + + + + + ues N
TETT| OTTT| TOTT} OOTT |[T10T1 |oTOT J100T 0001|1710 |OTTO}1010| 00TO {1100 0100 |[1000 _OOOO isenuod
uoTIRUTqUOD
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Source of variation daf
C.F. M. 1
Row contrasts 3
A= —RL- ZRC 1 1 Rows linear = RL = A+ 2B
B = -ZRL+RC 1 1 quadratic = RQ = AB
= " = - =
AB = RQ 1) ‘_1 cubic RC 2A-B
Column contrasts 3
C= -CL- ZCC 1 1 Columns linear = CL = C+ 2D
D= -ZCL + CC 1 1 quadratic = CQ = CD
CD = CQ 1 1 cubic = CC = 2C-D
%
Roman numbers = (AB ) 3
AC = RLCL + 4RCCC 1 ( 1 RL CL
BD = 4RLCL + RCCC 1 1 RCCC
A = C 1 1 R.C
BED = Bg% Q “Q
)
Greek letters = (AB ) 33
ABD = -2R.C. +R.C 1) 8 R.C
QL Q C L Q
BC = ZRLCL - ZRCCC+ , ?< <
4RLCC-RCCL 1 1 RQCC
ACD = (-RL- .ZRC)CQ 1 L1 RCCL
U3 J
latin letters = (AB ") 3
AD = ZRLCL-ZRCCC-RLCC+
4
RCCL 1 \ 1 RLCC
ABC = RQ(-CL- ZCC) 1 1 RQCL
BCD = (=-2R
( L+ RC)CQ 1 1 RC CQ
Total 16
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The individual degree of freedom contrast matrix for the above 16

combination is;

IST [e1J0108] vN 93 JOJ XTJ1eW }1SPIJUOD WOopaai] jo aaibop orburs Hurpuodsaiiod ayg
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e-| - + | e | 6| ¢ | | 6| 6| = | 6 | ¢ | + | - | e~| "%
- € e~ + + e-1 ¢ - + €-| ¢ - - € e~ | + 050y
+ - - + - + + - - + + - + - - + OOOm
€ + - €~ ¢-| - + € €~ - + € € + - €= qOOm
e-| 6| 6| ¢ | - | eV e~ + | + | e~ €| - e} 6|6 | e6-] 2oy
€ €~ €~ € + - - + - + + - €~ € € €= Oqu
6 € €~ 6-| ¢ + = e~ ¢€- = 2 € 6= | €= | € 6 ToTy
- € €~ + - € €- + - € €~ + - € €=~ # OO
+ - - + + - - + + - - + + - - + OO
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The corresponding single degree of freedom contrast matrix for the 24
factorial is:

o
T S S S S S
—
(=]
ol I S S Y I S T R TR S T B |
—
—
Sl ++++ 1+ 1 0+ 0+ 0 010 + 1
—
(=]
Sl ++++ 0 0+ 0 0+ 00+ 0+
—
p—
ol rrr v+ ++ 0000+ + 0
p—
(=]
Sl T Fr v+ 0+ + 000000+
ey
—
Sl++ 1 v+ 00+ + 0+ +
—
(=]
Sl++r 100 0+ + 01 +++ + 10
y—d
gl =
Sl =+ r + 1 +++ 01+ 0 ++0 00 +
«-| ©
2
a =
=1 = I e A R T R I T B
S
(=]
=~ I R B
(=]
(=]
= B B L R B B B
p—
p—
S+ 1 1+ +++ 0+ 0+
(=]
(=]
—
=3 [ e R I I I R I
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(=]
=3 L R L o I I S BT
(=]
(=]
=28 I S S
o)
0 A
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o 0AQ C
S 10 0 0222820349
§IS<ao<OA0<xm M < < < M
O
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The particular contrast matrix utilized is not unique, as has been
demonstrated above., All orthogonal contrast matrices resulting in latin squares

could be considered, For example, other sets of contrasts among rows (or columns)

could be:
1 2 3 4 1 2 3 4
Mean| + + + + Mean{ + + 4+ 4
Rl - 4+ 0 0 Rl - 4+ 0 0
R2 0 0 - +4jor RZ + + =2 0
R3 + + - = R3 + 4+ + =3

The interaction of row and column contrasts possibly could be utilized to allocate

the symbols in the latin square,

We wish to illustrate the method of constructing latin squares using
orthogonal polynomial coefficients. We shall first consider the construction of
three mutually orthogonal latin squares of order 4 and then we shall consider the
construction of a single latin square of order 6. In the preceding table on
orthogonal polynomials for n = 4 denote all combinations with a plus sign as
belonging to (RLCL)1 and those with a minus sign as belonging to (RLCL)0 c
Do likewise for the R.C. and R _.C_, effects. Then, the four latin square

QQ ccC

symbols are obtained as follows:

"
>

= 0 4+ 1010 + 1111
(RLCL)I’ (RQCQ)I’ (RCCC)1 0000 + 0101 + 101¢

C.),= 0001+ 0100+ 1011 +1110 =B

» (ReCelg

RpCL» RgCrlg
(RCp)gs (RyCqlos (RSC )y

= 0 001 4+ 1100 = D
RQCQ)I’ (RCCC)O 0011 + 0110 + 1001 + 11

= 0010 + 0111+ 1000 4+ 1101 = C

(R.C.)

1Sl ¢
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This results in the following latin square of order 4

A B C D
B A D C
C D A B
D C B A

Likewise, if we use the following polynomial contrasts we obtain .the two mutually

orthogonal mates of the above square:

(R Cy)p» (RGClgs (RC)g = 0001 + 0110 + 1000 + 1111
(R Cn)s (RGCL)y, (RSCp), = 0010 + 0101 + 1011 + 1100
(R;Cq)gr RCilgs (RCp); = 0011 + 0100 + 1010 + 1101
(R Colgr RoC)ps (RGCp)y = 0111 + 1001 + 1110 + 0000

"
o < © R

and

(RLCC)I’ (RQCL)I’ (RCCQ)l = 0011 + 0101 + 1000 + 1110 =1
(RLCC)I’ (RQCL)O, (RCCQ)O = 0001 + O111 + 1010 + 1100 =1II
(RLCC)O, (RQCL)O, (RCCQ)I = 0000 + 0110 + 1011 + 1101 = III

(RLCC)O, (RQCL)I’ (RCCQ)O = 0010 + 0100 + 1001 + 1111 =1V

The above results in the following two latin squares of order 4

8 a B Y 111 11 v 1
y B o 6 v I I { 11
o 6 Y B I v 11 111
g Y 8 P 11 111 I v

The above method of constructing mutually orthogonal latin squares using
polynomial coefficients works for latin squares of order n where n = 2P . We
need another procedure for other values of n and shall now construct a latin
square of order 6 from the orthogonal polynomial coefficients in the table of
single degree of freedom contrasts for 36 combinations. If we observe only

the signs of contrasts we note that the 36 combinations may be classified into
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six sets of four with like signs and two additional sets of six. The latter two
sets will be used to build up the six sets of four into six sets of six as follows

where all combinations with a plus sign go in the one level and all those with a

minus sign go in the zero level (see page 32):

(RyCp))s (R3C3)ys (RyCy)ys (RgCy)y + 2 from (R\Cy)y, (R,C,) (R5C4)), (RyCY) ), R Cp))

(RyCz)gr R3C3)5s (R3Cy)) (RyCgy + "

(RyCalys (R3C3)gs (RUCygs R5Cylg+ "

(R,Cp)g (R3C3))y (RyCY)yy R G, + 2 from (R)C))ys (R, Cp)ys (RyC)y (R,C))H(R;Cy)y
(RyS3)gr (R3C)ys (RyCy)ys (RgCg)y "

(R, C3)1» (R3C3)4s (RyCylys (RyC;), + "

From these sets we obtain

(12 + 21 + 34 + 43) + (00 + 55) = A
(02 + 20+ 35 + 53) + (11 + 44) = B
(01 + 10 +45 +54) + (22 + 33) = C
(04 + 15 440 + 51) + (23 + 32) = D
(03 + 25 +30 + 52) + (14 + 41) = E
(13 + 24 431 + 42) + (05 +50) = F

This results in the following latin square of order 6:

00 A 10 C 20 B 30 E 40 D 50 F
01 C 11 B 21 A 31 F 41 E 51 D
02 B 12 A 22 C 32 D 42 F 52 E
03 E 13 F 23 D 33 C 43 A 53 B
04 D| 14 E 24 F 34 A 44 B 54 C
05 F 15 D 25 E 35 B 45 C 55 A

The pair of treatments in the second set of parentheses, e.g. (00 + 55), was
picked from the set of six in such a manner as to have i and j in the combina-

tion ij, contain 0, 1, 2, 3, 4, and 5 since each letter must appear once in

each row and once in each column.

It would be interesting and perhaps enlightening to carry out the above
procedure for n =10 and 12 and to exhaustively study the complete set of 35

contrasts for n =6,
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V. Group Construction of O(n, t) Sets

V.0. Introduction
The construction of O(n,t) sets based on groups and their

associlated mappings such as automorphism, complete mapping, and orthomorphism
is the oldest and still the most popular method for n not of the form 4t + 2 .
Euler [1782] implicitly utilized some properties of finite groups of order 2t + 1
and 4t for his construction of O(2t+1,2) and O(4t,2) sets, respectively., It
was MacNeish [1922] who, for the first time, explicitly (however, not rigorously)
utilized group properties for his construction of O(qm, qm-l) sets and O(n, \)
£ £ {

q ¢ q
I 2 ’ r
'y=1. The

sets, where q is a prime, m is a positive integer and if n = q d

is the prime power decomposition of n then \ = min(qf , qi yeees 9y
field construction of O(qm, qm- 1) sets found independently by Bose [1938]

and Stevens [1939] is based on the additive group of GF(qm) and its related
cyclic group of automorphisms, The O(n,n-1) sets for n = 3,4,5,7,8 and 9
exhibited by Fisher and Yates [1957] are based on cyclic group and abelian groups.,
Several beautiful applications of group theory to the existence and non~-existence
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